

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

2024 Didymos Campaign

Dr. Damya Souami⁽¹⁾ & Dr. Timothy R. Holt ^{(2),}

(1) LESIA, Observatoire de Paris, Paris, France.

(2) Centre for Astrophysics, University of Southern Queensland, Queensland, Australia,

Asteroid Collaborative Research via Occultation Systematic Survey

DART

Double Asteroid Redirection Test

65803 Didymos (r) and Dimorphos (l)

NEA 65803 Didymos (~850m) and satellite Dimorphos (~170m) Dimorphos target of the DART mission and follow up LICIACUBE and HERA

Source: "NASA/Johns Hopkins APL" is in the Public Domain

Dr. Damya Souami

Dr Timothy Holt

DART Mission

Hit satellite Dimorphos 26th September, 2022

- Aim to discover effect of impactor on an asteroid.
- Followed by
- Original orbit time 11 hours and 55 minutes
- Impact reduced by ~33 minutes
- Followed by LICIACube

Source: "DART Animated Infographic" by NASA/Johns Hopkins APL is in the Public Domain

Hera mission

ESA mission

Launching in October 2024

Arrive December 2026

Evaluate the impact of DART

- Deploy two CubeSats
- Cameras on board to document the results of the impact

Porto Spain,

Largest ACROSS (funded) campaign – Aug. 25th, 2022 Deployment: Algeria, Spain, Portugal w. 3, 7, & 21 stations.

ACROSS Campaign

• Before impact

Observations' period June. 15th, 2022 - Sept. 25th, 2022 Stars' G. mag. 7.0 to 11.0 mag. Max. expected durations 0.01 s to 0.13 s Outcome 5 attempts: 3 bad weather, 2 unsuccessful

• After impact:

Observations' period Oct. 15th, 2022 - Mar. 22nd, 2023 Successful outcomes 20 for Didymos, 4 of which with Dimorphos Stars' G. mag. 9.0 to 13.5 mag. Max. expected durations 0.15 s to 0.39 s

ACROSS Campaign

Challenges

- The dispersion of the initial orbital solution
- The very short durations, mostly between 0.07 s and 0.21 s
- Very few events involving bright stars <12
- The ability to deploy enough mobile stations equipped with fast cameras ...
- non-homogeneous distribution of observers across the globe!
- Accounting for topography in the prediction and deployment

So far:

- an amazing ProAm adventure
- 20 successful occultations by Didymos
- dramatically reduced the orbital uncertainties
- improving the accuracy of the heliocentric momentum enhancement parameter β \odot (Makadia, et al. 2024, PSJ)

2022/11/12 – USA Third detection of both components

1466 best predicted events (anywhere on Earth)

dates (March 1st 2022 - Dec, 31st 2024)

2024 Campaign

Objectives

duration [s

expected

max.

- keeping the high-accuracy astrometry to support Hera
- (both heliocentric orbit and mutual orbit)
- better determination of β \odot ,
- refining the 3D shape model.

Circumstances

- mostly observable from the southern hemisphere!
- a handful of events in Europe and North America (most at low elevations),
- non-homogeneous distribution of observers!

magnitude of the occulted star

💦 Uni**SQ**

Dr Timothy Holt

Best events

Epoch (UT)	Stars' G mag.	max. duration	max. drop	geographic region	interactive sky chart (lab.)
2024-05-31 T15:22	11.8	0.21 s	6.43	QLD , NT, SA, WA	(a)
2024-08-10 T09:37	11.0	0.40 s	5.87	NSW, VIC, SA	(b)
2024-08-13 T13:02	6.7	0.74 s	9.47	QLD , SA, WA	(c)
2024-08-26 T13:38	11.4	0.29 s	6.03	NSW, VIC, SA	(d)

Epoch (UT)	Stars' G mag.	max. duration	max. drop	geographic region	interactive sky chart (lab.)
2024-05-05 T15:25	10.9	0.17 s	8.62	(<u>VIC</u> , SA, WA), & (NZ)	(e)
2024-06-05 T16:26	12.0	0.16 s	6.35	QLD , SA	(f)

The challenge

Epoch (UT)	Stars' G mag.	max. duration	max. drop	geographic region	interactive sky chart (lab.)
2024-07-12	10.4	0.09 s	7.47	<u>QLD</u> , NT, WA	(g)

Gear requirements

- You will need mobile telescopes, if you are off the path by 500m, and you are not mobile ...
- Timing requirements: GPS timing accuracy is by-far the most reliable, as the timing uncertainty cannot be larger than (or equivalent the exposure) time.
 - → The 1a solution: use of cameras with integrated GPS antennas is by far the best option.
 - → The 1b solution: time-boxes if you can (external GPS antenna, practice, practice, practice),
 - → The second best is NTP synchronisation of your computer clock,
 - →an alternative solution to be explored depending in your equipment is the use of a chronoflash.
- Telescope's aperture: for the brightest events, small aperture scopes can be used
- Frame acquisition rate: depending on the event, we would suggest at least 33Hz, however tests must be made

Observers' registration form (for coordination purposes)

Plan of action

- Planning and logistics
 - recruiting observers
 - identifying additional equipment
 - possibly shipping equipment document for observers
- Campaigns' coordination to maximise the return
 - Local coordinators working closely with the ACROSS team
 - always check the latest prediction
 - chords will be assigned
- May 5th and 31st, and June 5th events are crucial to prepare for August
- The last good opportunities to support Hera before it reaches Didymos
- Another great opportunity for the Australian community to support yet another space mission

Dr. Timothy Holt <u>Timothy.holt@unisq.edu.au</u>

Observers' registration form (for coordination purposes)

CRICOS QLD 00244B NSW 02225M | TEQSA PRV 12081 CRICOS: QLD 00244B, NSW 02225M TEQSA: PRV12081

Questions?

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Dr. Damya Souami: damya.souami@obspm.fr ; across@oca.eu

> Each observer, each institution is considered as a collaborator and is therefore a co-author to the scientific paper.

In return, we ask that you communicate your results to us and not post them on social media.