GPS FLASH TIMING

Michael Camilleri. April 2024. mcamilleri69@gmail.com

WHY GPS FLASH TIMING?

- Accurate timing using 1 PPS GPS flashes synced to GPS satellite time and UTC
- Usable with any type of camera, analog or digital
- Simpler setup than analog VTI
- Cheaper and more accessible especially for new or casual observers or large campaigns
- Future proof not dependent on ongoing production of IOTA-VTI, legacy analog video or single developers

GPS FLASH TIMING METHODS

Two main methods:

- "Smart" GPS flasher with logged GPS timestamps:
 - Aart's flashers, Chronoflash, new IOTA-GFT etc
- "Dumb" GPS flasher using corrected recording system timestamps
 - JOIN/IOTA-EA system
 - Method of Le Cam

520 500

- Will demonstrate method of Le Cam using a "Dumb" GPS flasher
- Discuss issues that affect all GPS flash timing systems

GPS FLASH SOURCES

HiLetGo VK172 USB GPS Receiver

- \$US12 from Amazon
- Same as used by JOIN/IOTA-EA
- Simple GPS device with a 1 PPS flashing LED
- Powered via USB cable or small USB powerbank
- Trivial modification to destroy the Red 'On' status LED with a craft knife
- No DIY build, soldering, programming, 3D printing etc

FANCIER GPS FLASH SOURCES

- Can also build a simple flasher using any U-BLOX series 6, 7 or 8 receiver with basic soldering to connect LED and perhaps an intensity control
 GlobalSat BU-353N5 or similar might be useable for both flash and PC
- time untested
- Separate antenna for faster satellite acquisition and better stability

THE PC/RECORDING SYSTEM TIME

- "Dumb" GPS flash pulses are not logged so need to know the nearest UTC second
- Use the PC system time, disciplined by NTP (Meinberg NTP) or by a GPS time receiver sync via BktTimeSync or NMEATIME2
- Remote time sync possible using 4G/5G hotspot or GPS USB receiver
- PC time MUST be accurate to <<1 s so the nearest UTC second can be reliably identified
- ~100 ms accuracy is OK
- Must record with timestamped frames
 - Recommend using SharpCap ADV format (upcoming SharpCap release) or SER format for video, or FITS
 - Can use AVI format with on-screen timestamps but not recommended

FLASH TAGGING THE OBSERVATION

- I usually do a 3 minute recording with GPS flashes near start and end
- Put a series of GPS flashes down the scope tube before and after the expected time
- Position the GPS flasher to get even illumination with no saturation aim for 30-50% on the histogram
- Can alter the position or angle to control illumination or cover with tape experiment
- Exposure times NOT multiples or divisors of 100 ms to ensure first frame has a decent amount of flash time in it. Use 40, 80, 160 ms, 190 ms, 240 ms etc.
- Series of flashes ensure there should be some usable flashes given handheld illumination and the time cycling

LIGHT CURVE MEASUREMENT USING TANGRA

- Use TANGRA or other light curve reduction to measure the offset
- Set a suitable measurement aperture depending on your camera and mount (details later)
- Use Aperture photometry for aperture background, not PSF or anything fancy
- Set the Acquisition delay to 0 and disable NTP offset when it pops up
- Generate the light curve and save CSV

LIGHT CURVE WITH GPS FLASHES – FULL

LIGHT CURVE WITH GPS FLASHES – PRE EVENT

MEASURING THE OFFSETS – EXCEL CALCULATOR

- Automates and streamlines the calculation
- Visual selection aid for data processing
- Some error checking
- Calculates acquisition delays and corrected UTC for flashed frames
- Calculates interpolated acquisition delay and interpolated UTC for event frame

COPY THE LIGHT CURVE CSV INTO CALCULATOR

A1 \checkmark : $\times \checkmark f_x$ Tangra v3.7	.0.5
---	------

Tangra v3.7.0.5 Measurments of 3 objects C:\Users\admin\Occultations\20240316 (17374) 1981 EF4\(17374) 1981 EF4 2024-03-16T08_49_07Z.adv Asteroidal Video (ADV2.16) Time: Timestamp Saving During Recording Reversed Gamma Colour Measured Band Integration Digital Filter Signal Method Background Method Instrumental Delay Corrections Camera AAV Integration First Frame L AverageBackground Not Required 1 по GrayScale NoFilter AperturePhotometry asi462mm Type 1 OccultedStar FWHM Measured Starting Fixed 10 Object Aperture Tolerance Starting) 246.7 no 4.16 5.13 3.07 yes 246.3 2 GuidingStar 4.16 2.69 yes 180.8 221.7 no 3 GuidingStar 4.16 2.62 yes 118.7 64.1 no Time (UT) 16 FrameNo Signal (1) Background (1) Signal (2) Background (2) Signal (3) Background (3) 7 [08:49:08.132] 8 [08:49:08.212] 20 21 9 [08:49:08.292] 10 [08:49:08.372] 11 [08:49:08.452] 12 [08:49:08 532 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 13 [08:49:08.613] 14 [08:49:08.692] 15 [08:49:08.772] 16 [08:49:08.852] 17 108 49 08 932 Chart Area 45510 18 [08:49:09.012] 19 [08:49:09.092] 20 [08:49:09.172] 21 [08:49:09.252] 22 [08:49:09.332] 23 [08:49:09.412] 24 [08:49:09.492] 25 108:49:09.572 26 [08:49:09 652] 27 [08:49:09.732] 39 40 28 [08:49:09.812] 29 [08:49:09.892] 30 108 49 09 972 31 [08:49:10.052] 32 [08:49:10.132] 44 45 33 [08:49:10.212] 34 108-49-10 2921 35 [08:49:10.372] 47 36 [08:49:10.452] 37 [08:49:10.532] 38 108-49-10 612 39 [08-49-10 692] 40 [08:49:10.772] 41 [08:49:10.852] 42 [08:49:10.932] 43 [08:49:11 012 44 [08:49:11.092]

. .

+

Camera Acquisition Delays Flash 1 Flash 2 Light Curve

VIEW DATA AND IDENTIFY PRE-EVENT FRAMES

SELECT PRE-EVENT FRAMES AND MEASURE DELAY

-													×
G1	✓ : × ✓	<i>fx</i> 80											~
1	AR					G	Н	1	I K				C.+
1 4	couisition Dela	v for				80			Ava Acquisition Delay (ma	10.4	Dolou Colou	lated	
2	equisition Dela	Sot	Packaro	hund	6	110 000			Avg Acquisition Delay (maj	10.4	Delay Calcu	lated	
2		Set	Dackgru	unu	9	101 280			Experies (ma)				
3	rameNo Time (11	T) Signal (1) De	ockGround (1)	mD (1) E	lach Event	Background Ev	ant Signal P	ackground	Calculated Exposure (ms)	80	Set Exposure		
4 5	00 109:40:12 0	721 162 070	112 120	12 001	nash Event	Background Ev	ent signal D	ackground	PPS Elach Duration (ms)	00			
0	81 [08:49:13.9	521 532 220	486 500	396 261	0	0	0	0	FFS Flash Duration (IIIs)	100			
7	02 100:40:14.0	22] 200,200	400,000	122 621	0	0	0	0	Elux Total	1 072 004		# Framos Flash	
8	83 108:49:14.1	121 210,200	145 390	45 151	0	0	0	0	Flux 1	15 001		Flux Last	185
9	84 [08:49:14.2	921 219,380	164 900	64 661	0	0	0	0	Ava Background	100 239		Tiux East	100,
10	85 [08:49:14.3	721 218 180	174 340	74 101	õ	0	0	0	Unit Elux (per ms)	10 730			
11	86 [08:49:14.4	521 217 490	174 910	74 671	0	0	0	0	PPS duration in first frame	1.5	Flux 1 / Unit Flux	PPS duration in last frame	17
12	87 [08:49:14.5	32] 166,790	126,790	26,551	0	0	0	õ					
13	88 [08:49:14.6	12] 162,150	111,630	11,391	0	0	0	0	Time (UT) PPS1	[08:49:15.972]		Time (UT) PPS1	[08:49:*
14	89 [08:49:14.6	92] 148,950	98,396	-1,843	0	1	0	98,396	Time (UT) PPS1 HH	8	Hours	Time (UT) PPS1 HH	3
15	90 [08:49:14.7	72] 146,610	101,120	881	0	1	0	101,120	Time (UT) PPS1 MM	49	Minutes	Time (UT) PPS1 MM	4!
16	91 [08:49:14.8	52] 147,150	102,420	2,181	0	1	0	102,420	Time (UT) PPS1 SS	15.972	seconds and ms	Time (UT) PPS1 SS	16.1
17	92 [08:49:14.9	32] 140,820	99,163	-1,076	0	1	0	99,163					
18	93 [08:49:15.0	12] 571,880	528,060	427,821	0	0	0	0	Time (UT) PPS1 (s)	31,755.972	Frame mid time in (UT) seconds	Time (UT) PPS1 (s)	31,75
19	94 [08:49:15.0	92] 786,550	714,450	614,211	0	0	0	0					
20	95 [08:49:15.1	73] 146,000	100,650	411	0	1	0	100,650	T_END	31,756.012	Time (UT) PPS1 + Exposure /2	T_START	31,75
21	96 [08:49:15.2	52] 140,630	100,250	11	0	1	0	100,250					
22	97 [08:49:15.3	32] 161,230	99,373	-866	0	1	0	99,373	T_PPS	31756.000	Integer part T_END – (UT) of PPS	T_PPS	31756
23	98 [08:49:15.4	12] 142,400	96,108	-4,131	0	1	0	96,108	T END DDD	04750 004		T END DOO	04754
24	99 [08:49:15.4	92] 150,280	98,749	-1,490	0	1	0	98,749	I_END PPS	31/56.001	I_PPS + PPS flash duration	I_END PPS	3175t
25	100 [08:49:15.5	143,050	100,560	321	0	1	0	100,560	Acquisition Delay (ma)	40.5		Acquisition Delay (ma)	10
20	101 [00:49.15.0	22] 100,000	100,830	591	0	- 1	0	100,850	Acquisition Delay (ins)	10.5	I_END = I_END FF3	Acquisition Delay (IIIs)	10
20	102 [00:49:15.7	121 144,400	102,190	1 951		1	0	102,190	1 200 000				
29	104 [08:49:1					1	0	99.039	1,000,000				
30	105 [08:49:1	Tag tram	esto	/		0	15 901	00,000	800,000	1			
31	106 [08:49:1				1	0	#######	0	400.000				
32	107 [08:49:1	moscuro			1	0	#######	0	200,000				
33	108 [08:49:1	illeasuie		<u> </u>	0	1	0	103,170	0 50	100	150 200		
34	109 [08:49:10.2	00] 107,100	100,000		0/	1	0	100,680	0 50	100	150 200		
35	110 [08:49:16.3	72] 151,060	99,141	-1,098	0	1	0	99,141					
36	111 [08:49:16.4	53] 161,200	103,660	3,421	0	1	0	103,660					
37	112 [08:49:16.5	33] 153,480	100,960	721	0	1	0	100,960					
38	113 [08:49:16.6	13] 154,440	101,960	1,721	0	1	0	101,960					
39	114 [08:49:16.6	92] 147,610	100,480	241	0	1	0	100,480					
40	115 [08:49:16.7	73] 148,210	101,360	1,121	0	1	0	101,360					
41	116 [08:49:16.8	52] 139,390	101,590	1,351	0	1	0	101,590					
42	117 [08:49:16.9	33] 146,430	101,050	811	0	1	0	101,050					
43	118 [08:49:17.0	13] 647,910	592,990	492,751	0	0	0	0					
44	119 [08:49:17.0	93] 878,340	813,520	/13,281	0	0	0	0					
45	120 [08:49:17.1	13] 155,120	100,200	-39	0	1	0	100,200					
<	Instructions Camera Acquisition Delays Flash 1 Flash 2 Light Curve + :												
				-									

FINAL DELAY CALCULATION AT EVENT TIME

Delay Calculator - For Tangra XLSX ☆ E &	9 🗏	0	👌 Share 🗸	M
、Menus ち さ 母 号 100% * \$ % 0, 00 123 Defaul * - 10 + B I ÷ A 🎙 T 🕀 T 🗄 * 田 题 * 匡 * ± * 肉 * Δ * Θ 迂 區 Υ 匾 * Σ				^
A B C D E F G H I J K L M N O Calculation of Acquisition Delay Analyse flashes from before and after the event Analyse flashes from before and after the event Acquisition delay is interpolated to the event Flash 1 105 08.49.15.972 08.49.15.961 10.52 Acquisition Delay (ms) 10.54 Acquisition Delay (ms) 10.55 Acquisition Delay (ms) 10.54 Acquisition Delay (ms) 10.55 Acquisition D	۹ 1.0 0.7 0.5 0.2 0.2 0.2 0.2 0.2	0 5 0 5	R	S
Light Curve - Signal Only	liter and provide prov	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0 0 0 0 0 0 0 0 0 0 0 0 0 0	2030 2047 2081 2081 2081 2081	2149		4.14
+ = Instructions x Camera Acquisition Delays x Flash 1 x Flash 2 x Light Curve x				4 4

APPLYING THE DELAYS IN TANGRA

- Do a new light curve reduction in TANGRA using a subset excluding the GPS flashes
- Enter the delay when the screen pops up
- If the delay is positive enter it as an Acquisition Delay, and disable the NTP box
- If the delay is negative set the Acquisition Delay to zero, enable the NTP time reference box and enter the delay as a positive (e.g. -12 ms is entered as +12 ms)
- Light curve times are now corrected as at the event time
- Generate light curve and CSV and do AOTA analysis as normal
- Do not make any further time adjustments in AOTA
- Can also use the flash frame UTC times directly in PyOTE

M Tar	ngra v3.7 - (17374)	1981 EF4 2024-03-16T08	_49_07Z.adv, ADV	/2.16			- 🗆 🗙
File	Frame Actions	Reduction Tools	Settings Help	>			
						1	
	2024 03 16	08:49:09:612					
		Camera and Tim	ning Corrections				×
		Enter information abo	at used video came	era and timing			
		Camera/System	Other	~ asi462	mm		-
		Other camera not li	sted above with or	without integrate	d GPS receiver.		
		Timestamina	Windows Timosta	ne hu Peccerlina	Coffueron V		
		The Windows Clo	windows ninestal	nised to UTC by a	external source or de	vice such as	iness 🔿 Pixels 🔿 PSF
		GPS or an NTP Se the recorded frame	erver. The recording as they are recei	g software is usin ved.	g the Windows Cloc	k to timestamp	g: Tracking with recovery
	New Park	Accuration	Dalau	10.55	milliseconds	Heln	s: 19 I: 0
		(Reference)	ime - UTC) Offe	ot	miliseconds	Help	t: O
			nii 010/013			1 Thinks	e: 0:01
		?		ОК	12		
	16	M					
	Meeting and a second						
4		_			,		
			and Let 1		1 1		
	-10sec	-Isec +IFr	IFr+	Isec+	Jump To		
Ready	Frame: 26	stroDigitalVideo Display	/ Mode 🔻				.4

TROUBLESHOOTING

How to know if something has gone wrong and what to do about it

- Check the NTP offsets as you set up
 - Windows command prompt, command "ntpq –p"
 - NTP Offset should be small, a few to low tens of ms
 - If very large offset restart the NTP service
- Log the NTP offsets
 - setup LOOPSTATS in Meinberg NTP and use the NTP monitor
- Check measured delay offsets are as expected
 - Know your typical offsets (mine are usually +10 to +20 ms)
 - Very large GPS delays (hundreds of ms) could indicate a GPS lock failure
 - If your GPS flasher stops and starts be suspicious
- If the GPS flash timing has failed can use the NTP timing as a backup time source with separately measured camera acquisition delays

									/
Command Prompt									
C:\Users\admin>n remote	tpq -p refid	st	t	when	poll	reach	delay	offset	jitter
+time.cloudflare	10.46.8.110	3	u	32	===== 64	====== 37	3.533	+0.645	32.112
*159.196.3.239 (.PPS0.	1		39	64	37	50.213	-4.222	34.214
+ntp3.ds.network	202.70.69.81	2		37	64	37	281.979	+10.937	32.215
+edge.txryan.com	233.119.138.126	2		36	64	37	196.099	+3.541	35.628
+50.205.57.38	.GPS.	1		34	64	37	209.385	-0.354	32.982
C:\Users\admin> C:\Users\admin>n remote	tpq -p refid	st	t	when	poll	reach	delay	offset	jitter
timo cloudflono	10 46 9 110	===:		=====	===== 6 A	====== 777		0 1E7	E 105
*150 106 3 230 /	DDS0	1	u	5	64	277	16 713	-7 050	1 506
-ntn3 ds network	202 70 60 81	2		6	64	277	201 222	+11 031	4.300
-odgo typyan com	222 110 120 126	2		4	64	277	190 990	+1 204	4.299
+50.205.57.38	.GPS.	1	u	2	64	377	207.448	-4.276	5.608
C:\llsers\admin\n	tna -n							\frown	
remote	refid	st	t	when	poll	reach	delay	offset	jitter
		===;	==:		=====	======			
+time.cloudflare	10.46.8.110	3	u	1	64	377	3.495	-3.385	4.282
*159.196.3.239 (. PPS0.	1	u	-	64	377	46.621	-5.951	3.751
-ntp3.ds.network	202.70.69.81	2	u	1	64	377	280.979	+7.353	4.902
-edge.txryan.com	233.119.138.126	2	u	5	64	377	205.069	+4.088	15.885
+50.205.57.38	.GPS.	1		6	64	377	207.959	-4.778	5.000

HOW ACCURATE IS GPS FLASH TIMING FOR REAL WORLD OBSERVATIONS?

- Real world SNR means lower accuracy than bench tests
- All will be revealed in upcoming JOA paper
- Accurate enough <u>when done properly</u>...
- Some issues to be aware of:
 - Dropped Frames
 - Rolling shutter camera line delays target drift in Y
 - PC time drift

DROPPED FRAMES

- Frames can drop when the exposure is too short for the camera/acquisition system
- Effect depends on how frames are allocated time stamps
- PyOTE assumes there are no dropped frames
 - Calculates average exposure time and populates timestamps
 - Each dropped frame could result in up to a 1 frame timing error
- TANGRA applies delay correction to each frame timestamp
 Dropped frames do not affect the timestamps of valid frames
- Must check for dropped frames
- If affected attempt correction using AOTA frame editor
- Always record with frame timestamps so can detect and fix

GLOBAL VS ROLLING SHUTTER CAMERAS

- Global Shutter cameras are best as the entire frame exposed at the same time and delays are easy to measure
- Rolling Shutter cameras have time delays in Y axis which can cause errors in the timing
 - Time delay with each Y line up to 10-20 ms total from top to bottom – depends on the camera
 - Measured time will drift with target drift in Y direction
 depends on the mount

To correct:

- Measure at the same Y line as the target star at time of event or:
- Measure the tracked star and interpolate in frame/time or:
- Measure the delay per line and apply corrections based on the Y positions at time of flash measurements and the event time

TARGET DRIFT, MOUNTS AND ROLLING SHUTTER CAMERAS

- The target star will usually drift due to tracking errors and mount mis-alignment
- Any drift in the sensor Y axis will affect the timing and will cause errors
- The error and correction required *depends on the mount type*:
 - A well guided mount needs no correction for drift of a few pixels or less
 - Pre-point mounts will have constant Y drift which can be corrected by interpolation
 - <u>EQ mounts with sensor aligned with DEC</u> in the Y axis (up/down with orientation of 0° of 180° to N) will have linear Y which can be corrected by interpolation
 - <u>EQ mounts with sensor not aligned</u> will have non-linear drift caused by the RA motor. Cannot be fully corrected by interpolation
 - <u>Alt-Az mounts</u> have no predictable drift pattern. Cannot be fully corrected by interpolation

MEASUREMENT OPTIONS FOR ROLLING SHUTTER CAMERAS

- Where to place the measurement aperture?
- How to do the calculation or correction?
- A fixed measurement aperture at the same Y line as the target start at the time of the event
 - Requires no further correction
 - Safest and most accurate method
- A tracked aperture on the target star or the same Y line:
 - Can be corrected by interpolation to the event time/frame IF there is no Y drift or linear Y drift
- Any other placement fixed or tracked or if Y drift is not linear
 - Can ONLY be corrected by measuring the Y line at the times of the flash measurements and applying the Y line delay corrections
 - Y line delays must be measured for the same recording must have the same ROI, exposure, binning, 8/16 bit setting etc.
 - Can make a 'library' of line delays for various settings but not recommended due to extra complexity

WHICH MEASUREMENT APERTURE TO USE WITH ROLLING SHUTTER CAMERAS

Mount Type	Anywhere in Frame	Fixed at Y line at event	Tracking Target Star
Well Guided Mount	Only with Line Delay corrections	Best	With or without interpolation
Pre-Point Mount	Only with Line Delay corrections	Best	OK with interpolation
EQ with sensor Y aligned to DEC	Only with Line Delay corrections	Best	OK with interpolation
EQ with sensor Y not aligned	Only with Line Delay corrections	Best	Only with Line Delay corrections
Alt Az Mount	Only with Line Delay corrections	Best	Only with Line Delay corrections

PC TIME DRIFT

- Methods of Le Cam and JOIN/IOTA-EA use the PC time and if this drifts and lags during the
 observation this will affect the measured offsets and affect the corrected timestamps
- Newer PCs with more powerful processors tend to drift less than older, slower PCs
- Time drift will usually be slow and approximately linear
- Need to check and understand how stable your PC time is
- Interpolation to the event frame/time will correct for a linear drift in the PC time

GOOD PRACTICE RECOMMENDATIONS

- General Recommendation:
 - Use Pre and Post event flashes
 - Measure and track target star or fix at Y position of event
 - Interpolate to event time
- Largely or fully corrects for rolling shutter line drift and PC time drift

PC TIME DRIFT

- Methods of Le Cam and JOIN/IOTA-EA use the PC time and if this drifts and lags during the
 observation this will affect the measured offsets and affect the corrected timestamps
- Method of JOIN/IOTA-EA which uses an off-axis guider to illuminate the sensor frame directly is not affected by time drift as the offset at the time of the event is measured directly
- Interpolation to the event frame/time will correct for a linear drift in the PC time
- For NTP time the PC time drift should be slow and approximately linear once the NTP time has stabalised. This will be system dependent so check your own systems performance. The NTP logs will be useful
- NMEATIME2 disciplines the clock much more frequently and aggressively than NTP. The offset logs will give an idea of how that behaves. It is NOT linear drift, but if the variation in offset it small (1-2 ms) can perhaps be safely ignored
- For a one off time sync using BktTimeSync the PC time will likely drift after the sync and that drift will likely be linear. Check your system by doing test resyncs to understand your typical drift rate and how close to an observation you should sync
- Newer PCs with more powerful processors tend to drift less than older, slower PCs

WRAPPING UP

- GPS flash timing can give accurate times for occultation using simple and cheap equipment and simple processes
- Can be used to measure PC time offsets and camera acquisition delays for NTP timing
- Requires careful preparation to ensure reliable PC times, correct GPS flash timing procedures and analysis processes suitable for the particular equipment setup
- Observers need to understand the issues around Global and Rolling shutter cameras and mount types to ensure correct procedures are adopted
- Protocols for GPS flash timing should be adopted by IOTA to give sound guidance to observers to ensure that good timing accurate is achieved

REFERENCES

- HiLetgo VK172 http://hiletgo.com/ProductDetail/2156993.html
- Le Cam camera acquisition delay method <u>https://nocturno.fr/acquisitiondelay/acqd_en.html</u> <u>https://nocturno.fr/acquisitiondelay/AcquisitionDelayMeasurement_EN_220915.pdf</u>
- IOTA EA/JOIN method <u>https://groups.io/g/IOTAoccultations/files/OccultationObservationMethodCMOScameraRev4.pdf</u>
- PC timing software:
 - Meinberg NTP <u>https://www.meinbergglobal.com/english/sw/ntp.htm</u>
 - NMEATIME2 <u>https://www.visualgps.net/#nmeatime2-content</u>
 - BktTimeSync <u>https://www.maniaradio.it/en/bkttimesync.html</u>
- Excel Calculator and documentation will be published soon and notified on TTOA/IOTA groups